逆水寒帮会倒买倒卖攻略|逆水寒官网电脑配置|

[1]郭亚逢,王赛,李超,等.调制脉冲等离子体的放电特性及降解异戊烷的实验研究[J].高压电器,2019,55(05):17-22.[doi:DOI:10.13296/j.1001-1609.hva.2019.05.003]
 GUO Yafeng,WANG Sai,LI Chao,et al.Experimental Study on Discharge Characteristics of Pulse?modulated Plasma and Isopentane Degradation[J].High Voltage Apparatus,2019,55(05):17-22.[doi:DOI:10.13296/j.1001-1609.hva.2019.05.003]
点击复制

调制脉冲等离子体的放电特性及降解异戊烷的实验研究()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第55卷
期数:
2019年05期
页码:
17-22
栏目:
2018 高电压与放电等离子体专题
出版日期:
2019-05-20

文章信息/Info

Title:
Experimental Study on Discharge Characteristics of Pulse?modulated Plasma and Isopentane Degradation
作者:
郭亚逢1 王赛2 李超1 宋项宁1 鲁娜2
(1. 中国石油化工股份有限公司青岛安全工程研究院,山东青岛266000;2. 大连理工大学电气工程学院,辽宁大连116024)
Author(s):
GUO Yafeng1WANG Sai2LI Chao1SONG Xiangning1LU Na2
(1.SinopecResearchInstituteofSafetyEngineering,ShandongQingdao266000,China;2.DalianUniversityofTechnology, LiaoningDalian116024,China)
关键词:
等离子体调制脉冲介质阻挡放电温度异戊烷
Keywords:
plasmapulse modulationDBDtemperatureisopentane
DOI:
DOI:10.13296/j.1001-1609.hva.2019.05.003
摘要:
为了提高放电等离子体降解VOCs的处理量,降低反应装置在放电过程中的温度,实验利用调制脉冲 电源驱动多层平板式介质阻挡放电装置产生低温等离子体,考察了放电过程中的温度变化以及O3产量,并 进行了异戊烷降解的实验研究。结果表明:调制脉冲放电可以分为放电阶段和放电间歇两个阶段,放电能 量主要集?#24615;?#25918;电阶段;减小占空比有利于减少欧姆热效应,降低反应器的温度,提高O3产生的能量效率; 调制脉冲放电可以有效地利用放电阶段产生的自由基以及活性物质,在占空比20%时,能量效率可?#28304;?#21040; 9.8 g/(kWh)。
Abstract:
In order to improve the capacity of discharge plasma for VOCs decomposition and reduce the reaction tem? perature in the discharge process,the pulse?modulated power is used to drive multilayered plate?type dielectric barri? er discharge device to produce non?thermal temperature plasma. The discharge temperature,O3 production and iso? pentane decomposition are examined. The results show that the pulse?modulated discharge can be divided into dis? charge stage and discharge?gap stage,and energy is mainly concentrated in the discharge stage. Decrease of the duty cycle can reduce ohmic heat effect and the temperature of the reactor,and improve the energy efficiency generated by O3. Pulse?modulated discharge can effectively utilize the radicals generated in the discharge stage. The energy effi? ciency of 9.8 g/(kWh) is obtained under the condition of duty cycle 20%.

参考文献/References:

[1] LI Yizhuo,FAN Zeyun,SHI Jianwei,et al. Post plasma?ca? talysis for VOCs degradation over different phase structure MnO2 catalysts[J]. Chemical Engineering Journal,2014,241 (4):251?258.
[2] 刘丹,解强,张鑫,等. ?#26412;?#20908;季雾霾频发期VOCs 源解析及健康风险评价[J]. 环境科学,2016,37(10): 3693?3701. LIU Dan,XIE Qiang,ZHANG Xin,et al. Source apportion? ment and health risk assessment of VOCs during the haze period in the winter in Beijing[J]. Environmental Science, 2016,37(10):3693?3701.
[3] ?#33258;?#21326;. 室内空气中挥发性有机污染物治理对策[J]. 环 境科学与技术,2011,34(s1):334?339. BAI Yuehua. Control of volatile organic compounds in indoor air[J]. Environmental Science & Technology,2011, 34(s1):334?339.
[4] 吕唤春,潘洪明,陈英旭. 低浓?#28982;?#21457;性有机废气的处理 进展[J]. 化工环保,2001,21(6):324?327. LYU Huanchun,PAN Hongming,CHEN Yingxu. Ad? vanced in treatment of low concentration volatile organic compounds?containing waste gas[J]. Environmental Protec? tion of Chemical Industry,2001,21(6):324?327.
[5] KARATUM O,DESHUSSES M A. A comparative study of dilute VOCs treatment in a non?thermal plasma reactor[J]. Chemical Engineering Journal,2016(294):308?315.
[6] XIAO G,XU W,WU R,et al. Non?thermal plasmas for VOCs abatement[J]. Plasma Chemistry and Plasma Process? ing,2014,34(5):1033?1065.
[7] 许铭杨,楚英豪. 低温等离子体处理VOCs技术研究进展 [J]. 四川化工,2017,20(6):33?36. XU Mingyang,CHU Yinghao. Research progress of non ? thermal plasmas VOCs abatement[J]. Sichuan Chemical Industry,2017,20(6):33?36.
[8] 叶楷,李茂刚,李沪萍,等. 低温等离子体技术处理废 气的研究进展[J]. 化工新型材料,2018,46(5):44?47. YE Jie,LI Maogang,LI Huping,et al. Research progress of waste gas treating by non ? thermal plasma technology[J]. New Chemical Materials,2018,46(5):44?47.
[9] MA Tianpeng,JIANG Huadong,LIU Jianqi,et al. Decom? position of benzene using a pulse?modulated DBD plasma [J]. Plasma Chem Plasma Process,2016(36):1533?1543.
[10] WHITEHEAD J C. Plasma?catalysis:The known knowns, the known unknowns and the unknown unknowns[J]. Jour? nal of Physics D?Applied Physics,2016,49(24):243001.
[11] WANG Baowei,CHI Chunmei,XU Meng,et al. Plasma?cat? alytic removal of toluene over CeO2?MnOx catalysts in an at? mosphere dielectric barrier discharge[J]. Chemical Engi? neering Journal,2017(322):679?692.
[12] 廖晓斌. 低温等离子体—催化净化有机废气反应自由基 及机理研究[D]. 广州:华南理工大学,2010. LIAO Xiaobin. Free radicals formation and mechanism for volatile organic compounds decomposition with non?ther? mal plasma?catalysis technology[D]. Guangzhou:South Chi? na University of Technology,2010.
[13] JIANG N,GUO L,SHANG K,et al. Discharge and optical characterizations of nanosecond pulse sliding dielectric bar? rier discharge plasma for volatile organic compound degra? dation[J]. Journal of Physics D ? Applied Physics,2017,50 (15):155206.
[14] MA Tianpeng,ZHAO Qiong,LIU Jianqi,et al. Study of humidity effect on benzene decomposition by the dielectric barrier discharge nonthermal plasma reactor[J]. Plasma Science & Technology,2016,18(6):686?692.
[15] 王保伟,姚淑美,彭叶平,等. 介质阻挡放电等离子体降 解高浓度甲苯[J]. 环境工程学报,2018,12(7):1977? 1985. WANG Baowei,YAO Shumei,PENG Yeping,et al. Degra? dation of high concentration toluene with dielectric barrier discharge plasma[J]. Chinese Journal of Environmental En? gineering,2018,12(7):1977?1985.
[16] 王梅. 介质阻挡空气放电等离子体(DBD)处理挥发性 有机物苯的效果及其影响因素研究[D]. 苏州:苏州大 学,2016. WANG Mei. Study on the influencing factors of the degrada? tion of volatile organic compounds benzene by air dielectric barrier discharge(DBD)plasma[D]. Suzhou:Soochow Univer? sity,2016.
[17] 杨茜,易红宏,唐晓龙,等. 低温等离子体处理工业废 气中甲苯的研究进展[J]. 安全与环境工程,2017,24(1): 77?83. YANG Qian,YI Honghong,TANG Xiaolong,et al. Re? search progress in treatment of toluene in industrial waste gas by non?thermal plasma technology[J]. Safety and Envi? ronmental Engineering,2017,24(1):77?83.
[18] TRINH Q H,MOK Y S. Environmental plasma?catalysis forthe energy?efficient treatment of volatile organic compounds [J]. Korean Journal of Chemical Engineering,2016,33(3): 735?748.
[19] LIANG Wenjun,LI Jian,LI Jingxin,et al. Formaldehyde re? moval from gas streams by means of NaNO2 dielectric barri? er discharge plasma[J]. Journal of Hazardous Materials, 2010,175(1/3):1090?1095.
[20] 李锻,刘明辉,吴彦,等. 双极性脉冲高压介质阻挡 放电降解氯苯和甲苯[J]. 中国环境科学,2006(s1): 23?26. LI Duan,LIU Minghui,WU Yan,et al. Removal of chloro? benzene and toluene by dielectric barrier discharge(DBD)of ambipolar pulse high voltage[J]. China Environmental Sci? ence,2006(s1):23?26.
[21] 朱双龙,胡涛,钟方川. 脉冲调制介质阻挡放电和催化 联用技术降解甲苯[J]. 环境工程,2013,31(3):66?70. ZHU Shuanglong,HU Tao,ZHONG Fangchuan. Degrada? tion of toluene by using pulse modulated dielectric barrier discharge and catalytic techniques[J]. Environmental Engi? neering,2013,31(3):66?70.
[22] 吴萧,刘盛余,何廷宇,等. 介质阻挡放电低温等离子 体技术处理3种代表性VOC[J]. 环境工程学报,2017,11 (10):5502?5508. WU Xiao,LIU Shengyu,HE Tingyu,et al. Degradation of three typical volatile organic compounds by dielectric barrier discharge(DBD)low temperature plasma[J]. Chinese Journal of Environmental Engineering,2017,11(10):5502? 5508.
[23] 余利群. 介质阻挡放电温度特性及活性物质光谱诊断研 究[D]. 杭州:浙江大学,2013. YU Liqun. Study of temperature characteristic and reactive species in DBD by optical emission specrroscopy[D]. Hangzhou:Zhejiang University,2013.
[24] 余利群,高翔,郑成航,等. DBD放电中温度特性与OH 促进NO 氧化过程光谱诊断[J]. 能源工程,2013(5): 29?35. YU Liqun,GAO Xiang,ZHENG Chenghang,et al. Optical study of temperature characteristic and NO oxidization pro? cess by OH radicals in DBD by optical emission spectrosco? py[J]. Energy Engineering,2013(5):29?35.
[25] HOLZER F,ROLAND U,KOPINKE F D. Combination of non ? thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds[J]. Appl. Catal. B? Environ,2002(38):163?181.
[26] MING O J,SHAO F Q,ZOU D B. Numerical simulation of negative oxygen ion generation and temporal evolution in at? mospheric plasma[J]. Acta. Phys. Sin. ,2011(60):110209.
[27] KIM H H,OH S M,OGATA A. Decomposition of gas?phase benzene using plasma?driven catalyst (PDC) reactor packed with Ag/TiO2 catalyst[J]. Appl. Catal. B?Environ,2005(56): 213?220.

备注/Memo

备注/Memo:
收稿日期:2018?11?19; 修回日期:2019?01?21 基金项目:国家自然科学基金(U1462105)。 Project Supported by National Natural Science Foundation of China(U1462105).郭亚逢(1981—),男,博士,高级工程师,主要从事VOCs 治理技术及含油污水处理技术研究。
更新日期/Last Update: 2019-05-20
逆水寒帮会倒买倒卖攻略