逆水寒帮会倒买倒卖攻略|逆水寒官网电脑配置|

[1]齐方方,王海云,常鹏.含风电的混合直流输电并网系统暂态特性分析[J].高压电器,2019,55(05):201-206.[doi:DOI:10.13296/j.1001-1609.hva.2019.05.031]
 QI Fangfang,WANG Haiyun,CHANG Peng.Analysis on Transient Characteristics of Hybrid DC Transmission Connected?grid System with Wind Power[J].High Voltage Apparatus,2019,55(05):201-206.[doi:DOI:10.13296/j.1001-1609.hva.2019.05.031]
点击复制

含风电的混合直流输电并网系统暂态特性分析()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第55卷
期数:
2019年05期
页码:
201-206
栏目:
研究与分析
出版日期:
2019-05-20

文章信息/Info

Title:
Analysis on Transient Characteristics of Hybrid DC Transmission Connected?grid System with Wind Power
作者:
齐方方1 王海云1 常鹏2
(1. 新疆大学教育部可再生能源发电与并网控制技术研究中心,乌鲁木齐830047;2. 国网新疆电力公司 经济技术研究?#28023;?#20044;鲁木齐830047)
Author(s):
QI Fangfang1WANG Haiyun1CHANG Peng2
(1. Ministry of Education Renewable Energy Generation and Grid Control Engineering Technology Research Center, Xinjiang University,Urumqi 830047,China;2. Chinese Power Company in Xinjiang Economic Institute of Technology, Urumqi 830047,China)
关键词:
混合直流输电电网换相换流器模块化多电平换流器暂态特性
Keywords:
hybrid DC transmissionline commutated convertermodular multilevel convertertransient perfor? mances
DOI:
DOI:10.13296/j.1001-1609.hva.2019.05.031
摘要:
为了提高直流输电并网系统的暂态稳定运行特性,文中基于送端采用双馈风电机组(DFIG),建立 LCC?二极管?MMC混合直流输电并网系统,研究该系统的并网暂态运行特性,其整流侧采用电网换相换流器 (line commutated converter,LCC),逆变侧采用模块化多电平换流器(modular multilevel converter,MMC)。为解 决MMC无法清除直流故障的问题,在逆变侧的直流出口处加装大功率二极管以阻断故障电流通路。在 MATLAB/Simulink平台搭建LCC?二极管?MMC风电并网仿真模型,通过设置直流及并网点接地故障,仿真分 析LCC及MMC的各种优越性。研究结果表明:该系统不存在逆变侧换相失败的问题且发生直流故障时系统 中大功率二极管能够阻断故障电流通路,在故障期间逆变侧直流电压也无突增现象且有功功率波动极小, 从而增强了系统的暂态稳定特性。
Abstract:
In order to improve the transient stability of the HVDC system,in this paper uses the DFIG based on send? ing,to establish the LCC?diode?MMC hybrid DC transmission network system,and study the grid?connected tran? sient operation characteristics of the system,the rectifier side using the line commutated converter(line commutated converter,LCC),inverter side using modular multilevel converter(modular multilevel converter,MMC). In order to solve the problems of the MMC can’t remove the DC fault,install the high power diode at the DC outlet of the invert? er side to block the fault current path. In the MATLAB/Simulink platform,LCC?diode?MMC wind power grid simula? tion model is established. The superiority of LCC and MMC is analyzed by setting the DC and grounding fault. The re? sults show that the system does not have the problem of inverter phase commutation failure and the high?power diode in the system can block the fault current path when the DC fault occurs,during the fault,the DC voltage of the invert? er side does not increase and the active power fluctuates very small,thus enhancing the system’s transient stability characteristics.

参考文献/References:

[1] 刘羽超,郭春义,许韦华,等. 一种降低直流输电换相失 败概率的控制方法[J]. 电网技术,2015,39(1):76?82. LIU Yuchao,GUO Chunyi,XU Weihua,et al. A control method to reduce commutation failure probability in HVDC power transmission[J]. Power System Technology,2015,39 (1):76?82.
[2] 徐政,王世佳,李宁璨,等. 适用于远距离大容?#32771;?#31354; 线路的LCC?MMC串联混合型直流输电系统[J]. 电网技 术,2016,40(1):55?63. XU Zheng,WANG Shijia,LI Ningcan,et al. A LCC and MMC series hybrid HVDC topology suitable for bulk power overhead line transmission[J]. Power System Technology, 2016,40(1):55?63.
[3] 汤广福. 基于电压源换流器的高压直流输电技术[M]. 北 京:中国电力出版社,2010. TANG Guangfu. Based on voltage source inverter of high? voltage direct current transmission technology[M]. Beijing: China Electric Power Press,2010.
[4] 赵成勇,郭春义,刘文静. 混合直流输电[M]. ?#26412;?#31185;学 出版社,2014. ZHAO Chengyong,GUO Chunyi,LIU Wenjing. Hybrid DC transmission[M]. Beijing:Science Press,2014.
[5] 李广凯,李庚银,梁海峰,等. 新型混合直流输电方式的 研究[J]. 电网技术,2006,30(4):82?86. LI Guangkai,LI Gengyin,LIANG Haifeng,et al. Research on a novel hybrid HVDC system[J]. Power System Technolo? gy,2006,30(4):82?86.
[6] LI Guangkai,LI Gengyin,LIANG Haifeng,et al. Operation? al mechanism and characteristic analysis of novel hybrid HVDC system[C]//International Conference on Power Sys? tem Technology. [S.l.]:IEEE,2006:1?6.
[7] LI Guangkai,LI Gengyin,LIANG Haifeng,et al. Research on hybrid HVDC[C]//International Conference on Power System Technology. [S.l.]:IEEE,2004:1607?1612.
[8] GUO Chunyi,ZHAO Chengyong. Supply of an entirely pas? sive AC network through a double?infeed HVDC system[J]. IEEE Transactions on Power Electronics,2010,25(11): 2835?2841.
[9] GUO Chunyi,ZHANG Yi,GOLE A M,et al. Analysis of dual? infeed HVDC with LCC?HVDC and VSC?HVDC[J]. IEEE Transaction on Power Delivery,2012,27(3):1529?1537.
[10] 薛英林,徐政,潘武略,等. 电流源型混合直流输电系 统建模与仿真[J]. 电力系统自动化,2012,36(9):98?103. XUE Yinglin,XU Zheng,PAN Wulüe,et al. Modeling and simulation for a hybrid current source converter high voltage direct current transmission system[J]. Automation of Electric Power Systems,2012,36(9):98?103.
[11] 杨汾艳. 直流输电系统主回路和控制器参数优化选择研 究[D]. 杭州:浙江大学,2007:39?104. YANG Fenyan. Research on parameter optimization of main circuit and controller of HVDC transmission system [D]. Hangzhou:Zhejiang University,2007:39?104.
[12] SZECHTMAN M,WESS T,THIO C V. A benchmark model for hvdc system studies[C]//International Conference on AC and DC Power Transmission. [S.l.]:IET,1991:374?378.
[13] 杨汾艳,徐政. 直流输电系统平波电抗器电感参数的 选择研究[J]. 高压电器,2009,45(3):8?10. YANG Fenyan,XU Zheng. Selection of smoothing reac? tance for HVDC projects[J]. High Voltage Apparatus, 2009,45(3):8?10.
[14] 赵成勇,李金丰,李广凯. 基于有功和无功独立调节的 VSC?HVDC控制策略[J]. 电力系统自动化,2005,29(9): 20?24. ZHAO Chengyong,LI Jinfeng,LI Guangkai. VSC?HVDC control strategy based on respective adjustment of active and reactive power[J]. Automation of Electric Power Sys? tems,2005,29(9):20?24.
[15] 郭春义,刘文静,赵成勇. 电压源电流源混合型高压直流 输电控制方法研究[J]. 中国科学(技术科学),2013,43 (11):1281?1288. GUO Chunyi,LIU Wenjing,ZHAO Chengyong. Research on the control method for voltage?current source hybrid? HVDC system[J]. Scientia Sinica Technologica,2013,43 (11):1281?1288.
[16] 苏常胜,李凤婷,武宇平. 双馈风电机组短路特性及对保 护整定的影响[J]. 电力系统自动化,2011,35(6):86?91. SU Changsheng,LI Fengting,WU Yuping. An analysis on short?circuit characteristic of wind turbine driven doubly fed induction generator and its impact on relay setting[J]. Automation of Electric Power Systems,2011,35(6):86?91.
[17] 徐政. 柔性直流输电系统[M]. ?#26412;?#26426;械工业出版社, 2013. XU Zheng. Flexible HVDC System[M]. Beijing:China Machine Press,2013.
[18] 赵畹君. 高压直流输电工程技术[M]. ?#26412;?#20013;国电力出 版社,2004. ZHAO Wanjun. High ?voltage direct current transmission engineering[M]. Beijing:China Electric Power Press,2004.
[19] 徐政. 交直流电力系统动态行为分析[M]. ?#26412;?#26426;械 工业出版社,2004. XU Zheng. AC/DC power system dynamic behavior analysis[M]. Beijing:China Machine Press,2004.
[20] 于凯. 基于MMC的直流输电系统控制策略研究[D]. 北 京:北方工业大学,2012. YU Kai. Research on control strategy of DC transmission system based on MMC[D]. Beijing:North China University of Technology,2012.

备注/Memo

备注/Memo:
收稿日期:2018?11?26; 修回日期:2019?01?19 基金项目:国家自然科学基金(51667020);自治区重点实验室项目(2016D3021)。 Project Supported by National Natural Science Foundation of China(51667020),Autonomous Region Key Laboratory Program (2016D3021).齐方方(1990—),女,硕士研究生,研究方向为柔性直流 输电和电力系统稳定与控制等方面的研究。 王海云(1973—),女,博士,教授,硕?#21487;?#23548;师,研究方向 为风电并网技术和高压直流输电与电力系统稳定性等方面 的研究。
更新日期/Last Update: 2019-05-20
逆水寒帮会倒买倒卖攻略