逆水寒帮会倒买倒卖攻略|逆水寒官网电脑配置|

[1]陈洪兴,汪静,顾承昱,等.上海电网主力机组跳闸典型过程分析及大数据平台构想[J].高压电器,2019,55(05):207-213.[doi:DOI:10.13296/j.1001-1609.hva.2019.05.032]
 CHEN Hongxing,WANG Jing,GU Chengyu,et al.Typical Process Analysis of Generator Trip in Shanghai Grid and Proposal of Big Data Platform[J].High Voltage Apparatus,2019,55(05):207-213.[doi:DOI:10.13296/j.1001-1609.hva.2019.05.032]
点击复制

上海电网主力机组跳闸典型过程分析及大数据平台构想()
分享到:

《高压电器》[ISSN:1001-1609/CN:61-11271/TM]

卷:
第55卷
期数:
2019年05期
?#38472;?
207-213
栏目:
研究与分析
出版日期:
2019-05-20

文章信息/Info

Title:
Typical Process Analysis of Generator Trip in Shanghai Grid and Proposal of Big Data Platform
作者:
陈洪兴1 汪静2 顾承昱1 张建新1 赵文彬3 高天云1
(1. 国网上海市电力公司,上海200122;2. 华东电力调控分中心,上海200002;3. 上海电力学?#28023;?#19978;海200090)
Author(s):
CHEN Hongxing1WANG Jing2GU Chengyu1ZHANG Jianxin1ZHAO Wenbin3GAO Tianyun1
(1. State Grid Shanghai Electric Power Research Institute,Shanghai 200122,China;2. East China Branch of State Grid Company of China,Shanghai 200002,China;3. Shanghai University of Electric Power,Shanghai 200090,China)
关键词:
发电机运行技术大数据数据挖掘
Keywords:
generatoroperation technologybig datadata mining
DOI:
DOI:10.13296/j.1001-1609.hva.2019.05.032
摘要:
阐述了上海电网电力平衡的形势,凸显了上海电网本地发电机组稳定运行的重要性,为提高机组运行 可靠性需要对跳闸故障进行深入分析。抽取足量的、具有代表性的主力机组作为研究样本,对机组跳闸事 件进行了统计分析,明确了应重点关注的方向。对辅机缺陷和控制软硬件缺陷引发两次真实跳闸事件进行 了过程回溯和原因分析,提出了按照发电厂分系统进行跳闸过程分析的方法,讨论了运行记录在事故分析 中的重要参?#25216;?#20540;。基于运行记录的重要性提出了构建机组运行信息大数据平台的构想,并给出了信息系 统架构;以机组跳闸季节特?#38498;?#35843;度运行记录词频分析为例,探讨了在大数据平台的基础上利用挖掘算法 建立知识仓库?#30446;?#34892;性。
Abstract:
Power balance situation in Shanghai grid is introduced,which indicated the importance of local generator stable operation. Sufficient and representative generators are sampled. Statistical analysis of generator groups trip? ping events is carried out,and the direction to be paid attention to is clearly pointed out. The process tracing and cause analysis of two real tripping events caused by auxiliary machine defect and control software and hardware de? fect are carried out. The classifying method for analyzing process of generator trip according to the subsystem of plant is present. The important reference value of operation records is discussed. The information structure of constructing big data platform is proposed. Taking the analysis of seasonal characteristics of generator groups tripping and word frequency of dispatch operation records as an example,the feasibility of building knowledge warehouse with mining algorithm on the basis of large data platform is discussed.

参考文献/References:

[1] 高天云. 上海地区发电机组2007年?#32570;?#25252;动作原因分析 [J]. 中国电力,2008,41(5):83?85. GAO Tianyun.Cause analysis on the protection action of fossil?fired power generation units in Shanghai area in 2007 [J]. Electric Power,2008,41(5):83?85.
[2] 高天云. 2009年上海地区发电机组跳闸原因分析及防范 建议[J]. 电力安全技术,2011(1):23?26. GAO Tianyun.Accident prevention and cause analysis on the power generation unit trip in Shanghai area in 2009[J]. Electric Safety Technology,2011(1):23?26.
[3] 高天云,林世东,谢林. 2013年度上海地区发电机组跳 闸原因分析及建议[C]//2014年中国发电厂热工自动化 技术论坛.浙江:[s.n.],2014:4. GAO Tianyun,LIN Shidong,XIE Lin.Advice and cause analysis on the power generation unit trip in Shanghai area in 2013[C]//China Power Plant Thermal Automation Tech? nology Forum 2014. Zhejiang:[s.n.],2014:4.
[4] 高天云. 上海地区2014年度发电机组跳闸原因分析[J]. 电力安全技术,2015(11):20?22. GAO Tianyun.Cause analysis on the power generation unit trip in Shanghai area in 2014[J]. Electric Safety Technolo? gy,2015(11):20?22.
[5] 陈洪兴,徐琴. 影响火电机组一次调频性能的问题分 析[J]. 华东电力,2014,42(12):2939?2942. CHEN Hongxing,XU Qin. Influencing factors for primary frequency regulation of thermal power unit[J]. East China Electric Power,2014,42(12):2939?2942.
[6] 薛禹胜,赖?#30340;? 大能源思维与大数据思维的融合(一)大 数据与电力大数据[J]. 电力系统自动化,2016,40 (1):1?8. XUE Yusheng,LAI Yening.Integeration of macro energy thinking and big data thinking part one big data and electric big data[J]. Automation of Electric Power Systems, 2016,40(1):1?8.
[7] 薛禹胜,赖?#30340;? 大能源思维与大数据思维的融合(二)应 用及探索[J]. 电力系统自动化,2016,40(8):1?13. XUE Yusheng,LAI Yening. Fusion of of big energy think? ing and big data thinking part two applications and explora? tions[J]. Automation of Electric Power Systems,2016,40(8): 1?13.
[8] 黄彦浩,于之虹,谢昶,等. 电力大数据技术与电力系 统仿真计算结合问题研究[J]. 中国电机工程学报,2015, 35(1):13?22. HUANG Yanhao,YU Zhihong,XIE Chang,et al.Study on the application of electric power big data technology in power system simulation[J]. Proceedings of the CSEE, 2015,35(1):13?22.
[9] 张沛,杨华飞,许元斌. 电力大数据及其在电网公司的 应用[J]. 中国电机工程学报,2014,34(z1):85?92. ZHANG Pei,YANG Huafei,XU Yuanbin.Power big data and its application scenarios in power grid[J]. Proceedings of the CSEE,2014,34(z1):85?92.
[10] 吴凯峰,刘万涛,李彦虎,等. 基于云计算的电力大数据 分析技术与应用[J]. 中国电力,2015,48(2):111?116. WU Kaifeng,LIU Wantao,LI Yanhu,et al. Cloud?computing based power big data analysis technology and its application [J]. Electric Power,2015,48(2):111?116.
[11] 梁俊宇,赵明,李鹏飞,等. 基于数据挖掘的火电机组 主要参数基准值获取方法[J]. 热力发电,2015,44(1): 73?76. LIANG Junyu,ZHAO Ming,LI Pengfei,et al.Data mining based determination method of main parameter benchmark values for power plant[J]. Thermal Power Generation,2015, 44(1):73?76.
[12] 林世东,高天云,谢林. 上海地区大机组5年来减负荷运 行原因统计分析[J]. 华东电力,2014,42(7):1493?1495. LIN Shidong,GAO Tianyun,XIE Lin.Statistical cause analysis on shanghai large unit reduced?load operation in five years[J]. East China Electric Power,2014,42(7):1493? 1495.
[13] 陈学家,高天云,陈洪兴. 2012年度上海地区大机组减负 荷原因分析及对策[J]. 华东电力,2013,41(8):1771? 1773. CHEN Xuejia,GAO Tianyun,CHEN Hongxing.Casual analysis and countermeasures of shanghai large unit reduced load operation in 2012[J]. East China Electric Power,2013,41(8):1771?1773.
[14] 中国电机工程学会信息化专委会. 中国电力大数据发展 白皮书[S]. 2013:9?12. Electric Power Information Special Committee of CSEE. China electric power big data development white paper[S]. 2013:9?12.
[15] 张东霞,苗新,刘丽平,等. 智能电网大数据技术发展 研究[J]. 中国电机工程学报,2015,35(1):2?12. ZHANG Dongxia,MIAO Xin,LIU Liping,et al.Research on development strategy for smart grid big data[J]. Proceed? ings of the CSEE,2015,35(1):2?12.
[16] 宋亚奇,周国亮,朱?#35272;? 智能电网大数据处理技术现状 与挑战[J]. 电网技术,2013,37(4):927?935. SONG Yaqi,ZHOU Guoliang,ZHU Yongli.Present status and challenges of big data processing in smart grid[J]. Power System Technology,2013,37(4):927?935.
[17] 李刚,焦谱,文福拴,等. 基于偏序?#25216;?#30340;智能电网 大数据预处理方法[J]. 电力系统自动化,2016,40(7): 98?106. LI Gang,JIAO Pu,WEN Fushuan,et al.A partial order reduction based method for big data preprocessing in smart grid environment[J]. Automation of Electric Power Systems, 2016,40(7):98?106.
[18] 苏衡,刘志方,曹立人. 中文阅读预视加工中的词频和 预测性效应及其对词切分的启示:基于眼动的证据[J]. 心理学报,2016,48(6):625?636. SU Heng,LIU Zhifang,CAO Liren.The effects of word fre? quency and word predictability in preview and their impli? cations for word segmentation in Chinese reading:Evidence from eye movements[J]. Acta Psychologica Sinica,2016,48 (6):625?636.
[19] 魏勇,胡丹露,郝晨光,等. 基于分类关键词词?#30340;?#22411; 的地缘政治主题爬虫设计[J]. 计算机工程,2016,42(2): 45?50. WEI Yong,HU Danlu,HAO Chenguang,et al.Design of geopolitical topical crawler based on classified keyword term frequency model[J]. Computer Engineering,2016,42 (2):45?50.
[20] 徐楠楠,王东风,韩璞. 基于正向最大匹配算法的电力 两票安全识别[J]. 计算机仿真,2014,31(1):145?148. XU Nannan,WANG Dongfeng,HAN Pu.Recognition of two? ticket system in power station based on forward maximum matching algorithm[J]. Computer Simulation,2014,31(1): 145?148.

备注/Memo

备注/Memo:
收稿日期:2018?11?26; 修回日期:2019?01?28陈洪兴(1963—),男,本科,高级工程师,主要从事热工 控制及发电电设备状态管理方面的研究工作。 赵文彬(1977—),男,工学博士,高级工程师,主要研究 方向设备状态管理。
更新日期/Last Update: 2019-05-20
逆水寒帮会倒买倒卖攻略